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Design Project Scheduling
Ming Ni, Peter B. Luh, Fellow, IEEE, and Bryan Moser

Abstract—Concurrent engineering has been widely used in
managing design projects to speed up the design process by
concurrently performing multiple tasks. Since the progress of a
design task often depends on the knowledge about other tasks
and requires effective communication, tasks and communica-
tion activities need to be properly coordinated to avoid delays
caused by waiting for information or the need for rework. This
paper presents a novel formulation for design project scheduling
with explicit modeling of task dependencies and the associated
communication activities. General dependencies are modeled
as combinations of three basic types representing sequential,
concurrent, and independent processes. Communication activities
are also modeled as tasks, and their interactions with design tasks
are described by sets of intertask constraints. The objective is
to achieve timely project completion with limited resources. To
improve algorithm convergence and schedule quality, penalties
on the violation of constraints coupling design tasks are added
to the objective function. A solution methodology that combines
Lagrangian relaxation, dynamic programming, and heuristic
is developed to schedule design and communication tasks, and
a surrogate optimization framework is used to overcome the
“inseperability” caused by nonadditive penalties. A heuristic
procedure is then developed to obtain scheduling policies from
optimization results and to dynamically construct schedules.
Numerical results show that the approach is effective to handle
various task dependencies and the associated communication
activities to provide high-quality schedules.

Note to Practitioners—A short product design cycle is critical
for manufacturers to succeed in the era of time-based competi-
tion. To speed up the design process, concurrent engineering has
been widely used where multiple design tasks are concurrently per-
formed. As a design task can be performed with preliminary or
partial information on other tasks and the information may be up-
dated, effective communication is required. If design and commu-
nication activities are not properly coordinated, the project may
be significantly delayed by waiting for information or by the need
for rework. This paper presents a novel formulation for design
project scheduling by appropriately modeling task dependencies
and the associated communication activities. A solution method-
ology based on decomposition and coordination is developed to
schedule both design and communication tasks to achieve timely
project completion. Numerical results show that the approach is
effective to handle various task dependencies and the associated
communication activities to provide high-quality schedules.
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I. INTRODUCTION

A. Motivation

ASHORT product design cycle is critical for manufacturers
to succeed in the era of time-based competition. To speed

up the design process, concurrent engineering has been widely
used where design tasks within a project are concurrently per-
formed. These tasks are assigned to design teams based on team
capabilities, and the progress of a task often depends on the
knowledge about other tasks such as design concepts, compo-
nent configurations, ranges of major parameters, and other key
technical data. Unlike traditional sequential design where a task
is started by a team with full knowledge on upstream tasks, a
task under the concurrent engineering paradigm may be started
with preliminary or partial information. In view that preliminary
designs are often modified, new information is frequently gen-
erated by upstream teams, and changes have to be incorporated
in downstream tasks [12]. These updates may demand inten-
sive communication, such as phone calls, teleconferences, and
face-to-face meetings, etc. [18]. A study showed that communi-
cation time may constitute 75% of total project time according
to Christian [9].

In view of the above, if design tasks and communication
activities are not appropriately scheduled, a downstream team
might start before enough information has been generated by
upstream teams, or the information has not been transferred to
downstream teams in a timely manner. As a result, tasks may
be significantly delayed since design teams may have to wait
for information in order to proceed further, and the delay of
a single task may have a domino effect on subsequent tasks
linked through dependency relationships or through sharing of
common resources. Also, performing a task with preliminary or
partial information is inherently risky for a downstream team.
If a downstream task starts too early or proceeds too fast with
insufficient information, time-consuming rework may have
to be carried out to incorporate changes in upstream designs,
causing significant delays. To achieve timely project comple-
tion without unnecessary delays, an appropriate approach is
imperative to model task dependencies to indicate how early
a task can start and how fast it can proceed, and to effectively
schedule both design and communication activities. Addition-
ally, design and communication times could be uncertain in
view of the creative nature of design, and the approach should
be able to appropriately handle uncertainties and to dynamically
construct schedules.
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Fig. 1. Task dependency. (a) Information Generation. (b) Task Progress
Relationship.2

B. Literature Review

In the following, existing models on task dependencies are
first introduced. Studies of the associated communication ac-
tivities are then reviewed. Finally, existing project scheduling
methods are discussed.

Task Dependency: To analyze the dependency relationships
among tasks in a project, it is important to delineate for each
task which other tasks information is needed from and which
other tasks information will be provided to as described by
the Dependency Structure Matrix (DSM) [29]. This matrix
has been used to identify necessary design iterations, and to
find appropriate task sequences to reduce possible rework
[8], [11], [19]. Since the DSM only captures zero-one task
dependency relationships, generalized precedence relations
were developed to include start–start, start–finish, finish–start,
and finish–finish relationships [7], [27]. For example, the
relationship between two concurrently performed tasks can be
described by start–start and finish–finish relationships, i.e., as-
suming that information is generated throughout the upstream
task, the downstream task can start after the upstream task
is started, and finish after the upstream task is finished. This
method has been used in project scheduling [27]. However,
generalized precedence relations cannot describe “how fast a
task can be performed,” since concurrency within the design
process cannot be captured by task start and finish times.

To clearly model task dependency relationships under the
concurrent engineering paradigm, the information generation
process was modeled and task dependencies were specified in
terms of task progresses (percentage of completion) instead of
start and finish times in [9]. Consider for example the design of
a computer data acquisition system, as shown in Fig. 1, where
the software design task requires the information from hardware
design. Fig. 1(a) describes the percentage of information gen-
erated in the process of hardware design. Fig. 1(b) represents
the maximum progress of software design for a given progress
of hardware design, and indicates how fast the software design
can be performed.1 This curve specifies the feasible area for soft-
ware design. By keeping software design in the feasible area (in-
cluding the curve itself), the chance of rework is assumed small
since sufficient information on hardware design can be obtained.
Such a progress curve is assumed to be monotonically nonde-
creasing. In [9], communication activities are modeled as part

1Comparing with [9, Fig. 2.3], x–y axes are swapped in this paper to be con-
sistent with the figure of information generation process.

Fig. 2. An example of project structure.

of the design work, and their required person-hours are given.
The models were used to study the effects of task person-hours
variations, to determine design team sizes, and to predict project
duration by using simulations. Relationships among design and
communication activities, however, have not been analyzed, and
when communication activities should be performed has not
been studied. In addition, the mathematical formulation of task
dependencies for the schedule optimization purpose was beyond
the scope of [9].

Communication: In most results on task dependencies,
communication has not been explicitly modeled. A method to
predict communication flows was presented by Morelli et al.
[23], where Dependency Structure Matrices were used to
identify task dependencies that may lead to communication
requirements. Statistical models were used to study how factors
such as the degrees of task dependencies affect communication
by Sosa et al. [28]. No communication models have been pre-
sented in the literature for the schedule optimization purpose to
the best of our knowledge.

Project Scheduling: With respect to project scheduling,
studies established that it is a generalization of job-shop sched-
uling problems and as such is NP-hard [5]. To solve the prob-
lems, optimization-based methods such as branch-and-bound
were developed by Demeulemeester and Herroelen [10],
Nazareth et al. [25], Zamani [34], and Heilmann [15]. For
most results, a total of less than 50 tasks were scheduled on
about five types of resources due to problem complexities.
Other optimization methods including genetic algorithms were
developed by Hartmann [13], Ozdamar [26], Hartmann [14],
and Valls and Ballestin [30]. Problems of larger sizes with more
than 100 activities were solved, however, solution qualities
were hard to evaluate. In addition to optimization, heuristic
procedures were developed by Ahn and Erenguc [2], Narahari
et al. [24], Yan and Wu [33], and Merkle et al. [22]. These
procedures are computationally efficient, however, results are
often of questionable quality, and there is no good way to
systematically improve the quality. Techniques to generate
benchmark instances were developed by Kolisch et al. [17].

The above approaches are based on deterministic models.
A review of stochastic methods with uncertain activity dura-
tions was provided by Brucker et al. [6], covering methods such
as stochastic dynamic programming and heuristic procedures.
An optimization method combining Lagrangian relaxation and
stochastic dynamic programming was developed to handle un-
certain process times [20], and uncertain number of design it-
erations [21]. In addition, product development projects were
modeled as stochastic processing networks [1], and factors that
affect product development time were analyzed.

2The name of this type of figures is “Completion” in [9].
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C. Scope of This Paper

In this paper, a novel optimization formulation and the cor-
responding solution methodology for design project scheduling
are presented. In Section II, communication activities are ex-
plicitly modeled as tasks to send and receive information, and
the method by Christian [9] is extended to describe dependency
relationships among various tasks for the schedule optimiza-
tion purpose. General task dependencies are modeled as com-
binations of three basic types representing sequential, concur-
rent, and independent processes, and are described by linear
inequality constraints. A design project scheduling problem is
then formulated based on the scheduling model by Zhang et al.
[36]. The objective is to achieve timely project completion sub-
ject to task dependencies and resource capacity constraints. To
improve algorithm convergence and schedule quality, penalty
terms for the violation of coupling communication dependency
constraints and resource capacity constraints are added to the
objective function. As our focus is on modeling task depen-
dencies, uncertainty is not introduced and the formulation is
deterministic.

In the formulation, constraints, and the original objective
function are additive in terms of design tasks, and only the
penalty terms are nonadditive, resulting in a “pseudoseparable”
structure. A solution methodology based on decomposition
and coordination using Lagrangian relaxation is developed in
Section III, and a surrogate optimization framework is used to
overcome the inseparability. After coupling constraints are re-
laxed by using Lagrangian multipliers, all terms associated with
a particular design task and its associated communication tasks
are pulled out from the Lagrangian to form a task subproblem.
By keeping decision variables belonging to other subproblems
at their latest available values, subproblems are solved by
using dynamic programming to obtain solutions satisfying the
“surrogate optimization condition” (to be described later) for
proper multiplier updating directions. Subproblem solutions
are then coordinated through iterative updating of multipliers
by using the surrogate subgradient method by Zhao et al. [37].
A heuristic procedure is also developed to construct feasible
schedules based on subproblem solutions. To handle possible
uncertainties in task processing times, solutions obtained based
on the deterministic model of Section II are used to establish
scheduling policies to dynamically construct schedules based
on the realizations of random events.

Numerical results presented in Section IV demonstrate that
the approach is effective to handle task dependencies to provide
high-quality schedules. The importance of appropriately sched-
uling communication activities is demonstrated by the signif-
icantly better performance of our approach as compared with
the case where communication activities are not initially consid-
ered, but are performed during the execution phase when teams
need information to proceed further. Our approach is also shown
to be effective to handle uncertain task processing times.

II. PROBLEM FORMULATION

In this section, the structure of a design project is first pre-
sented, and communication activities are explicitly modeled as
tasks to send and receive information. The graphic method in
[9] is extended to describe dependency relationships among var-
ious tasks. For simplicity, it is assumed that there is no rework

by keeping progresses of tasks within their feasible areas, e.g.,
the one in Fig. 1(b). General task dependencies are represented
by combining three basic types, i.e., precedence, pace, and inde-
pendency, respectively, representing sequential, concurrent, and
independent processes, and are described by linear inequality
constraints. The project scheduling problem is then formulated
based on the scheduling model of Zhang et al. [36]. Since our
focus is on the modeling and treatment of task dependencies,
the formulation is deterministic. Nevertheless, when task pro-
cessing times are uncertain, solutions obtained based on the de-
terministic model can be used to establish scheduling policies
to dynamically construct schedules based on the realizations of
random events.

A. Design Project Structure

Suppose that the scheduling horizon has discrete time
units, with index ranging from 0 to K-1. There are teams
working on the project. For simplicity, it is assumed that each
team has a finite number of designers with identical capabilities,
and is modeled as a single “resource type” from the scheduling
viewpoint. The capacity (or the number of designers) of re-
source type at time is assumed given and is
denoted as . The project under consideration has design
tasks based on the overall product structure, e.g., one task for
designing one module of the product, as shown in Fig. 2. The th
design task may be assigned to a team with a
given resource-hour , which is assumed to be deterministic.

To describe task dependencies, suppose that design task is
dependent on the knowledge of design task . Task is an “up-
stream design task” for providing the information, and is a
“downstream design task” for requiring the information. The in-
formation generated in the progress of needs to be sent by
to . For simplicity, the activities of to organize and send in-
formation are aggregated as a single “sending task” belonging
to and denoted by and require certain resource-hours
to perform. Similarly, the activities of to receive and digest
the information are aggregated as a single “receiving task” be-
longing to and denoted by . The relationships among the
four tasks are shown in Fig. 3. In addition to obtaining informa-
tion from , team may need to provide feedback information
to . In this case, tasks and are interdependent. Accordingly,
there is a sending task for to send the feedback and a receiving
task for to receive the feedback.

B. Dependencies Among Various Tasks

With the introduction of sending and receiving tasks, re-
lationships among design and communication tasks need to
be established as part of the overall task dependencies for the
scheduling purpose. These relationships include dependencies
between upstream design and sending, sending and receiving,
and receiving and downstream design tasks; and each is repre-
sented by a graphical method similar to that of Christian [9],
as illustrated in Fig. 1. In this way, how early and how fast
tasks can be performed are governed by task dependencies. In
the following, characteristics of the graphical method are first
described. Task dependency relationships where a downstream
design task depends on a single upstream design task are
then presented in Section II-C. The case where a downstream
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Fig. 3. Design and communication tasks in a task dependency relationship.

Fig. 4. Basic dependency types. (a) Precedence. (b) Pace. (c) Independence.

design task depends on multiple upstream design tasks will be
presented in Section II-D

For simplicity, information generation and task progress
curves, e.g., Fig. 1, are assumed to be piecewise linear and
monotonically nondecreasing. As a result, a task dependency
relationship can be divided into stages, each corresponding to a
linear segment. The relationships within a stage can be classi-
fied into three basic types, as illustrated in Fig. 4: precedence,
pace, and independence, representing, respectively, sequential,
concurrent, and independent processes. In the figures, there
are two general tasks: Tasks 1 and 2, each with a single stage,
and Task 2 is dependent on Task 1. Fig. 4(a) describes the
precedence relationship, where Task 2 can only start after Task
1 is completed. Equivalently, the progress of Task 2 remains
zero until that of Task 1 reaches one, as shown by the thick
lines representing the feasible area. Fig. 4(b) describes the
pace relationship where two tasks can be concurrently per-
formed, but the maximum progress of Task 2 cannot exceed the
progress of Task 1. The feasible area is the unshadowed triangle
below the diagonal line (including the diagonal line). Fig. 4(c)
describes the independence relationship where two tasks can
be independently performed, and the entire area is feasible.
These three basic types will be described by linear inequality
constraints in the next subsection, and a general dependency
relationship will be modeled as a combination of them.

With the three basic dependency types, the dependency rela-
tionships among the tasks of Fig. 3 can now be illustrated by
Fig. 5, where the downstream design task depends on a single

Fig. 5. Analysis of task dependencies. (a) Information generation.
(b) Upstream design-sending relationship. (c) Sending-receiving relation-
ship. (d) Receiving-downstream design relationship.

upstream design task. Assume that the percentage of informa-
tion generated in the progress of the upstream design task is de-
scribed by Fig. 5(a), where most information is generated after
point A. In addition, it is assumed that the downstream design
task can be performed with preliminary or partial information
obtained in the early progress of the upstream design task [be-
fore B which corresponds to D in Fig. 5(b)], but has to wait for
the complete information to finish the downstream design. The
dependency relationships among the tasks are then illustrated in
Fig. 5(b)–(d), as described next.

Upstream Design-Sending: Based on the dependency rela-
tionship between a pair of upstream and downstream design
tasks, a stage of the sending task may have to be performed
after the upstream information of that stage is completely avail-
able (precedence relationship). Or it can be performed concur-
rently with the upstream design task to send preliminary infor-
mation, and its maximum progress3 is constrained by how much
information has been generated and the quality of the informa-
tion, with a slower maximum progress for less information or
lower-quality information (pace relationship). In Fig. 5(b), three
stages are assumed: two paces and one precedence. For the two
pace stages (ending, respectively, at C correspond to A, and D
correspond to B), the sending task can be performed concur-
rently with the upstream design task, and the maximum progress
is assumed for simplicity equal to the percentage of information
generated. In the precedence stage (starting at D), the sending
task has to be performed after the complete information of that
stage is available.

Sending-Receiving: The methods of communication deter-
mine how sending and receiving tasks are performed. For ex-
ample, in e-mail communication, the receiving task receives
and digests information after the sending task (organizing and
sending information) is completed. In a face-to-face meeting,

3The minimum progress can also be specified for synchronization between
tasks and can be handled in a way similar to that of the maximum progress. For
simplicity, the minimum progress is not considered.
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Fig. 6. Upstream–downstream design relationship.

the receiving task is generally performed concurrently with the
sending task, with its maximum progress constrained by how
much information has been communicated by the sending task.
Fig. 5(c) depicts a face-to-face meeting, where the maximum
progress of the receiving task is assumed for simplicity equal to
the progress of the sending task.

Receiving-Downstream Design: With the information re-
ceived, the maximum progress of a downstream design task
is determined by the degree it requires the information, an
intrinsic property of the design process. In Fig. 5(d), two
stages are considered. In the first pace stage (ending at E
corresponding to B and D), the downstream design task can
be performed concurrently with the receiving task, assuming
that it may proceed with preliminary or partial information. In
the second precedence stage (starting at E), the downstream
design task is performed after the receiving task is completed,
assuming that complete information is required for the design.

Different from [9] where only dependency relationships
among design tasks are modeled, in this paper, dependency
relationships among various tasks (including communication
tasks) are modeled, and will be used to determine when to per-
form the tasks for timely project completion. As a dependency
relationship between two tasks may have multiple stages, each
described by one of the three basic types in Fig. 4, tasks are
divided accordingly into subtasks, as described below using the
example of Fig. 5.

The dependency relationship between the upstream and
downstream design tasks is first derived by mapping coor-
dinates of “stage starting points” in Fig. 5 (b)–(d) to the
progresses of the upstream and downstream design tasks, as
shown in Fig. 6. These two tasks are then divided into three
subtasks, one for each stage, and these subtasks are assumed
to be performed sequentially.4 The sending and receiving tasks
generally do not introduce additional stages, and are divided ac-
cordingly into the same number of subtasks. For simplicity, it is
assumed that there is no constraint among subtasks of a sending
task, or among subtasks of a receiving task.5 With the above
introduction of subtasks and carrying over the dependency rela-
tionships of Fig. 3 to the subtask level, the relationship among

4If subtasks can be concurrently performed, then they should be redefined as
tasks so that their relationships can be described by dependency models, as in
Fig. 5.

5If there are constraints among subtasks of a communication task, they can
be relaxed by using Lagrangian multipliers and handled by using the method
presented in [36].

Fig. 7. Subtasks in a task dependency relationship.

a design subtask and its sending subtask and the succeeding
design subtask is depicted in Fig. 7, resembling a disassembly
operation; and the relationship among a design subtask and its
receiving subtask and the preceding design subtask resembles
an assembly operation. These dependency relationships among
subtasks will be mathematically formulated next.

C. Subtasks and Dependency Relationships

In this section, design and communication tasks are consid-
ered as general tasks without differentiation unless explicitly
stated otherwise. With the division of tasks into subtasks, sub-
tasks are basic scheduling units, and are performed by teams in
a nonpreemptive way. The required resource-hours for subtasks
are estimated based on previous project experiences, and are
assumed given. In the following, resource allocation and pro-
cessing time requirements for subtasks are first presented. The
relationships among subtasks are then formulated as linear in-
equality constraints.

Resource Allocation and Processing Time Requirements for
Subtasks: Suppose that task is dependent on task , and both
are divided into subtasks, with the th ) sub-
task of denoted as . Task is assigned to team , and
the processing time of , denoted as , is governed by the
required resource-hour and the amount of resource allo-
cated by team , with a large amount leading to a short pro-
cessing time. For simplicity, it is assumed that resource alloca-
tion within the processing period is fixed, and is inversely
proportional to the level of resource allocated and takes a few
discrete values. From a different perspective, the allocation of

to subtask at time , denoted as , is inversely pro-
portional to within the processing period of and zero
outside [36], i.e.,

and

(1)

In the above, and are the beginning and completion times
of , respectively. With resource allocated, subtask
needs to be performed by team for a period of time , sat-
isfying the following processing time requirement:

(2)
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The progress of at time , denoted as , is represented
by the percentage of completed resource-hours [9, pp. 10–11]
as follows:

(3)

Relationships of Successive Subtasks Within a Design Task:
As mentioned earlier, if is a design task, then subtasks within
are to be performed sequentially, i.e., the ( )th subtask can
only start after the th subtask has been completed

(4)

Relationships of Subtasks Belonging to Two Dependent
Tasks: For two general tasks and , where is dependent on ,
the dependency relationship between their subtasks and

is described by one of the three basic types. For prece-
dence, can only start after has been completed, i.e.,

(5)

A pace relationship requires the maximum progress of
to be less than or equal to that of , implying a constraint at
every . To avoid too many constraints, an equivalent view based
on constant resource allocation (1) and progress computation (3)
is that cannot be started before is started, and cannot
be completed before is completed, i.e.,

(6)

and

(7)

For independency, there is no constraint between the subtasks.

D. Dependencies With Multiple Upstream Design Tasks

In the above two subsections, a downstream design task is de-
pendent on a single upstream design task. Sometimes a design
task may need information from multiple design tasks. Suppose
that design task is dependent on a set of upstream design
tasks denoted as . The dependency relationships between de-
sign task and a design task in are described by the graph-
ical method of Fig. 5, and there are sets of such relation-
ships. Tasks are divided into subtasks based on all stage starting
point of these relationships, and each set of relationships is de-
scribed by constraints among relevant subtasks as formulated in
Section II-C. An example is a single-chip computer data acqui-
sition system, as shown in Fig. 8, where the software design task
depends on the knowledge about both computer circuit design
and data acquisition circuit design. Based on the task dependen-
cies, each task (either a design task or a communication task)
is divided into three subtasks, and a software design subtask
must satisfy two sets of dependency constraints described by
(5) (precedence) or (6) and (7) (pace), one for the computer cir-
cuit design and the other for the data acquisition circuit design.

Fig. 8. Task dependency relationship with multiple upstream design tasks.

E. Resource Capacity Constraints

In addition to task dependency relationships, resource ca-
pacity constraints require that at any time, the total allocation
of type resource to tasks should be less than or equal to the re-
source capacity . Considering design and communication
tasks as general tasks, the constraints are

(8)

F. Objective Function

As described in Section II-A, tasks are assigned to teams. The
teams could be internal groups within an organization or out-
side contractors, and may be distributed at different locations.
To coordinate them, each design task is assigned a due date [31].
These due dates could be determined through negotiation, back-
ward planning, or other methods [16]. Penalties are imposed on
missing due dates, and the objective function to be minimized
is set to be the weighted sum of such penalties on design task
tardiness, i.e.,

(9)

In the above, is the tardiness of design task , i.e.,
with being the due date, and is the weight. The weight

is generally high for the last design task of the project.
Based on the above, the overall problem is to decide begin-

ning and processing times of design, sending, and receiving sub-
tasks to minimize in (9) subject to constraints (2)–(7) associ-
ated with task dependencies and constraints (8) associated with
resource capacity.6 As the objective function (9) and constraints
(2)–(7) are additive in terms of design tasks, the problem formu-
lation is separable.

6By minimizing the task tardiness function (9) while assuming given
resource-hour requirements, the cost over run issue, an important subject for
design project scheduling, should be mostly contained.
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Fig. 9. Schematic of the solution process.

III. SOLUTION METHODOLOGY

A. Overview

In view that the problem presented above has a separable
structure, the Lagrangian Relaxation (LR) technique is used
to decompose the problem into easier task subproblems after
relaxing the coupling sending-receiving dependency con-
straints (5)–(7) and resource capacity constraints (8) by using
Lagrangian multipliers. Motivated by a method developed for
power system optimization [35], penalty terms for the violation
of coupling constraints are added to the objective function
(9) to improve algorithm convergence and schedule quality
through the reduction of constraint violation. As the penalty
terms are not additive, a surrogate optimization framework [37]
is used to overcome the limitations of standard Lagrangian
relaxation approaches requiring separable formulations [4]. In
this framework, all terms associated with a particular design
task and its associated sending and receiving tasks are pulled
out from the Lagrangian to form a subproblem in Section III-B.
By keeping decision variables belonging to other tasks at
their latest available values, subproblems are solved by using
dynamic programming to obtain solutions satisfying the “sur-
rogate optimization condition” in Section III-C. Subproblem
solutions are then coordinated through the iterative updating
of Lagrangian multipliers to maximize the dual function in
Section III-D. At the termination of such updating iterations,
subproblem solutions, when put together, may not constitute a
feasible schedule since coupling constraints have been relaxed.
A heuristic procedure is then developed to construct feasible
schedules based on subproblem solutions in Section III-E. The
schematic is presented in Fig. 9.

The above method is based on the deterministic model
of Section II. As stated earlier, task resource-hours (or pro-
cessing times) could be uncertain. In this case, our method
can still be applied by using expected values of proba-
bilistic resource-hours. Results from dynamic programming
then establish scheduling policies to dynamically construct
schedules based on the realizations of random events also in
Section III-E.

B. Problem Reformulation and Decomposition

To improve algorithm convergence and solution quality of
Lagrangian relaxation, penalty terms on the violation of cou-
pling sending-receiving dependency constraints (5)–(7) and re-
source capacity constraints (8) are added to the objective func-
tion as follows [35]:

(10)

In the above, design task is dependent on design task ;
and denote, respectively, the th sending and

receiving subtasks between them; represents a general task;
and weight reflects the importance of satisfying the coupling
constraints. Since the original problem in Section II is separable
in terms of design tasks but penalty terms with “max” operators
in (10) are not separable, the problem to minimize in (10) has
a pseudoseparable structure. Our goal is to relax the coupling
constraints and then decompose the relaxed problem into task
subproblems, one for each design task together with its sending
and receiving tasks. Therefore, coupling sending-receiving de-
pendency constraints (5)–(7) are relaxed by using Lagrangian
multipliers , and , respectively, and resource ca-
pacity constraints (8) are relaxed by using multipliers . The
relaxed problem is to minimize below

(11)

The above minimization is subject to processing time require-
ments (2), design subtask precedence constraints (4), and task
dependency constraints (5)–(7) between a design subtask and its
sending or receiving subtasks. Decision variables are the begin-
ning and processing times of subtasks.

In view that penalty terms with “max” operators in are
not additive, the relaxed problem cannot be directly decom-
posed into task subproblems. To overcome this difficulty, a sub-
problem for design task is formed by pulling out all terms as-
sociated with and its sending and receiving tasks in (11), while
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keeping decision variables belonging to other tasks at their latest
available values, i.e.,

(12)

In the above, is the set of design tasks providing information
to design task , and are the costs associated with a
sending subtask that sends information from to

(13)

Similarly, are the costs associated with a receiving sub-
task that receives information for design task from de-
sign task

(14)

The minimization in (12) is subject to processing time require-
ments (2), design subtask precedence constraints (4), and task
dependency constraints (5)–(7) between a design subtask and its
sending or receiving subtasks. Decision variables are the begin-
ning and processing times of design subtasks within task and
the beginning and processing times of the associated sending
and receiving subtasks.

C. Solving Task Subproblems With BFDP

To solve a task subproblem (12), dynamic programming (DP)
is used with a stage corresponding to a subtask, and a state cor-
responding to the earliest possible subtask beginning time with a
particular level of resource allocation. The decision for a state is
to choose the beginning time for the corresponding subtask. Pos-
sible transitions between states at successive stages are delin-
eated by the dependency relationship between the two subtasks.
In the DP process, in (12) needs to be allocated to individual
subtasks as stagewise costs. However, since the penalty terms
for the violation of resource capacity constraints involve the max

operator and are not additive in terms of subtasks, cannot be
directly allocated to individual subtasks. This difficulty is over-
come by approximation under the surrogate optimization frame-
work. All terms associated with a particular subtask are pulled
out from to form its stagewise cost, and decision variables
not belonging to this subtask are kept at their latest available
values. With the this, subproblem (12) is approximately solved.
The handling of difficulties caused by complicated dependency
relationships among subtasks is presented next.

As presented earlier, the relationship among a design subtask
and its sending subtask(s) and the succeeding design subtask re-
sembles a disassembly operation, while the relationship among
a design subtask and its receiving subtask(s) and the preceding
design subtask resembles an assembly operation. Backward dy-
namic programming (BDP) can solve a subproblem with dis-
assemblies but not assemblies, and this is illustrated by the ex-
amples in Fig. 10 [36]. For a subproblem with disassembly as
represented by the tree of Fig. 10(a), BDP starts from leaf nodes
subtasks 3 and 4 to decide their optimal beginning time for each
state. The algorithm then moves backward from right to left to
decide the beginning time for each state of subtask 2 to mini-
mize its cost-to-go, which is the sum of its stagewise cost plus
the minimal terminal costs for subtasks 3 and 4. The beginning
time for each state of the subtask 1 is then decided. The op-
timal trajectory is then traced forward from the initial state to
determine subtask optimal beginning and processing times. If
assembly exists, as shown in Fig. 10(b) and BDP is used, the
above process moves backward from subtasks 3 and 4 to subtask
2, and then to both subtasks 1 and 5. When tracing forward to de-
termine the optimal trajectory, there are two decisions on the op-
timal beginning and processing times for subtask 2, one from 1
and the other from 5. These two decisions, however, may be dif-
ferent, indicating that BDP cannot solve a subproblem with as-
semblies. Similarly, forward dynamic programming (FDP) can
solve a subproblem with assemblies but not disassemblies. In
addition, forward dynamic programming cannot handle uncer-
tainties since the information about “where-to-go” may not be
exist for certain states of a subtask.

To overcome the above difficulties, the backward/forward dy-
namic programming (BFDP) of Zhang et al. [36] is used. For the
example of Fig. 10 (b), a new tree is formed by flipping subtask
5 from the left-hand side of subtask 2 to its right-hand side, as
shown in Fig. 10(c). Since this new tree has a structure similar
to that of Fig. 10(a), the BDP process can be carried out from
right to left as for Fig. 10(a), i.e., from subtasks 3–5 to subtask
2, and then to subtask 1. Nevertheless, for each state of subtask
2, since subtask 5 in fact precedes subtask 2, the transition cost
is evaluated from every state of 5 satisfying the dependency re-
lationship between 5 and 2, and the minimal cost is the minimal
“cost-to-arrive” in the forward dynamic programming. Accord-
ingly, the cumulative cost for each state of subtask 2 is the sum
of its stagewise cost plus the minimal costs-to-go for subtasks 3
and 4 plus the minimal cost-to-arrive from subtask 5. Similar to
Fig. 10(a), the optimal trajectory is traced from the initial state
of subtask 1 to determine subtask optimal beginning and pro-
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Fig. 10. Subproblems with disassembly and assembly. (a) Disassembly.
(b) Disassembly and assembly. (c) New tree.

Fig. 11. Original and new trees for a task subproblem. (a) Original tree.
(b) New tree.

cessing times. Since the optimal beginning and processing times
of subtask 2 are decided only from subtask 1 and those for sub-
task 5 are decided from subtask 2, possible decision conflicts
are avoided. This method combines backward DP and forward
DP, and is thus called backward/forward DP. A side comment is
that since this method has the forward DP component, it cannot
be directly used to handle uncertainties [36].

For a subproblem (12) with design, sending, and re-
ceiving subtasks, the original and the new trees are shown in
Fig. 11(a) and (b), respectively. The backward/forward DP
starts from computing costs for leaf nodes, i.e., the receiving
and sending subtasks in Fig. 11(b). The algorithm then moves
from the last design subtask to the first design subtask to
recursively minimize the cumulative cost, which is the sum
of the stagewise cost plus the minimum costs-to-go from the
succeeding design and sending subtasks plus the minimum
costs-to-arrive from the receiving subtasks. After the minimum
cumulative cost is computed for the first design subtask, the
optimal trajectory is traced from the initial state to determine
subtask optimal beginning and processing times.

D. Updating Lagrangian Multipliers

With task subproblems (12) solved, the high-level dual
problem is to find the optimal multipliers to maximize the dual
function subject to the non-negativity of multipliers, i.e.,

and

(15)

where is in (11) evaluated at subproblem optimal solu-
tions. In view that (12) are approximately solved as stated ear-
lier, the dual value obtained is a “surrogate” dual, denoted as

. The surrogate subgradient method of Zhao et al.
[37] is then used to update the multipliers. The key idea is that
a proper direction to update the multipliers can be obtained if
the following “surrogate initialization condition” (16) and “sur-
rogate optimization conditions” (17) are satisfied without opti-
mally solving all subproblems:

(16)

(17)

Then, it can be proved that the surrogate dual is always less than
the optimal dual value , i.e.,

(18)

and the corresponding surrogate subgradient forms an acute
angle with the direction toward the optimal multipliers, there-
fore is a proper direction to update multipliers. Components
of surrogate subgradient at iteration are computed as
follows:

(19)

The multipliers are then updated along the surrogate subgradient
direction, i.e.,

with

(20)

In the above, is the step size at iteration , and should satisfy
the following “surrogate stepsize condition”:

(21)

In view that is generally unknown, it needs to be estimated.
For this purpose, a feasible solution and its corresponding cost

are obtained at iteration m by using a heuristic procedure to
be presented in Section III-E. The estimated optimal dual value
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is then obtained as the average of the best feasible cost and
the highest surrogate dual value obtained thus far. Step size
is then calculated as

(22)

To evaluate solution quality, a lower bound to the optimal fea-
sible cost is required. If all the three surrogate conditions (16,
17, and 20) are satisfied, is a lower bound according to (18).
However, since is an estimate of of (22) may not sat-
isfy condition (21). Consequently, may not be a lower bound
to the optimal feasible cost. To obtain a lower bound, the orig-
inal objective function (9) without penalty terms is used at the
end of the surrogate subgradient iterations when the relative sur-
rogate duality gap is less than a given threshold,
or when the maximal number of iterations or the maximal CPU
time has been reached. Since the problem with the original ob-
jective function (9) is separable, a few iterations of the tradi-
tional LR method starting with the latest available multipliers
would generate a reasonable dual cost, which serves as a lower
bound to the optimal feasible cost to provide a measure of so-
lution quality. The original objective function (9) is also used
at the first iteration to satisfy surrogate initialization condition
(16).

E. Constructing Feasible Schedules

Since coupling sending-receiving dependency constraints
(5)–(7) and resource capacity constraints (8) have been relaxed,
subproblem solutions, when put together, generally do not
constitute a feasible schedule. A list scheduling heuristic based
on Zhang et al. [36] is thus developed to generate feasible
schedules using resource allocation levels determined in sub-
problems. In the procedure, a list of “assignable” subtasks
with relevant dependency relationships satisfied is created at
time zero and updated at subsequent time units. Subtasks in
the set are sorted in the ascending order of their subproblem
beginning times. Subtasks are scheduled according to the list
if the required resources are available. If there is not enough
resource for a subtask at a particular time, the subtask is delayed
by one time unit. When multiple subtasks compete for a limited
amount of a resource, the incremental changes in cumulative
DP costs are compared for competing subtasks. Subtasks with
higher incremental changes are then scheduled and other sub-
tasks are delayed by one time unit. After a subtask is scheduled,
it is removed from the list, and its succeeding subtasks are
added to the list if their relevant dependency relationships are
satisfied. Note that if a subtask and its succeeding subtask have
a pace relationship, they may start at the same time. The above
process continues until all subtasks are scheduled. In addition
to the above procedure, other heuristic methods such as the
constraint propagation technique of Wim and Pape [32] may
also be applied to construct a feasible schedule.

The above method is based on the deterministic model of
Section II. As stated earlier, the resource-hours (or processing
times) required by subtasks could be uncertain. In this case,
our method can still be applied by using the expected values
of probabilistic subtask resource-hours. Results from the
backward/forward DP are then used as scheduling policies
describing what to do under which circumstances. As stated in

Section III-C, backward/forward DP has both backward and
forward DP components. For a backward DP component, the
beginning time of a subtask at a particular state is determined
by tracing the optimal policy forward in stages based on the
realization of random events. For a forward DP component,
however, such a policy may not exist since the information
on “where-to-go” may not exist. For example, if an uncertain
receiving subtask is performed with a processing time varied
from its expected value, then the optimal beginning time of the
subsequent design subtask may not be obtainable because of the
lack of “where-to-go” information. In this case, the beginning
time of the subsequent design subtask is set to be the solution
obtained in DP if the dependency relationship is satisfied, or
the beginning time is postponed to satisfy the dependency
relationship. Another way to handle the forward DP component
is to restart the DP process from the current time based on the
realizations of random events. With subtask beginning times
determined based on the above policies, the list scheduling
heuristic presented above can be used to dynamically construct
schedules.

IV. NUMERICAL RESULTS

The above method has been implemented by using the ob-
ject-oriented language C++ and tested on a Pentium IV 1.8 GHz
personal computer running the Windows XP operating system.
In the following, three examples are presented. In Example
1, scheduling communication and design activities together is
compared with the case where communication activities are not
considered initially, but are performed when design teams need
information to proceed further. In Example 2, our method is
compared with the LR method without the additional penalty
terms and with a heuristic method based on a modified shortest
processing time/critical ratio (SPT/CR) rule. The effects of
different penalty weights are also examined. In Example 3,
schedules are dynamically constructed according to DP policies
for a project with uncertain resource-hours. Simulations are
then performed to compare the performance with that of the
modified SPT/CR rule.

Example 1: In this example, two cases are examined where
communication activities are scheduled in different ways. In the
first case, communication and design subtasks are scheduled to-
gether by using our method. In the second case, communication
tasks are not considered initially, but are performed when de-
sign teams need information to proceed further. As a result, the
corresponding downstream design tasks and their subsequent
tasks may be delayed because of waiting for information. Three
problem instances with different project sizes are examined. In
the first instance, a simple project is considered so that results
can be illustrated by using Gantt charts. Two more instances are
then examined to compare the results as project size increases.

For the first problem instance, a project with two design tasks
are considered with data summarized in Table I. Design task 2
is dependent on the knowledge of design task 1, and there are a
sending task and a receiving task between them. Among these
tasks, there are three dependency relationships, each having a
single stage and described by the pace relationship. Thus each
task has one subtask. The resource-hours are given, with com-
munication constituting a significant portion of the project time
as stated earlier. Subtasks are to be assigned to two teams, each
with two designers. In the objective function, design task 2 has
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TABLE I
DATA FOR INSTANCE 1 IN EXAMPLE 1

Fig. 12. Gantt charts for Problem Instance 1 (a) Case 1: Schedule with both
communication and design activities. (b) Case 2: Schedule without communi-
cation activities. (c) Case 2: Realized schedule with communication activities
added.

a higher tardiness penalty weight since it is the last design task
of the project.

For Case 1, the schedule obtained by using our method is il-
lustrated by the Gantt chart of Fig. 12 (a), where each team per-
forms its design and communication subtasks in parallel by al-
locating half of its resource to each subtask. The feasible cost
is 56 with a zero duality gap. For Case 2, only design subtasks
are scheduled initially, as shown in Fig. 12(b), and the feasible
cost is zero. However, this result is misleading since commu-
nication activities are not considered. When design subtask (2,
1) needs information from (1, 1), sending subtask and
receiving subtask have to be added, and design subtask
(2, 1) has to wait until the required information is received. The
realized schedule is shown in Fig. 12(c) with a feasible cost of
90. This cost is much higher than that of Case 1, with an in-
crease of 60.7%. The results show that proper scheduling of de-
sign and communication activities together can avoid the signif-
icant delay caused by waiting for information.

For the second problem instance, the project has 30 design
tasks and 16 communication tasks. There are 24 dependency
relationships among them, and each task is divided into 1 to 5
subtasks. These subtasks are to be assigned to six teams, each

TABLE II
PERFORMANCE COMPARISONS BETWEEN CASES 1 AND 2

with one to three designers. Results for this problem instance
are summarized in Table II. Similar to the previous problem in-
stance, design and communication subtasks are scheduled to-
gether for Case 1. The feasible cost is 5366 with a duality gap of
4.4%. For Case 2, only design subtasks are scheduled initially,
and the feasible cost is 2844. When communication subtasks are
added for the design teams to proceed further, the feasible cost
for the realized schedule is 13 211, which is much higher than
that of Case 1 with an increase of 146.2%.

For the third problem instance, the project has 60 design tasks
and 32 communication tasks. There are 48 dependency relation-
ships among them, and each task is divided into 1 to 5 sub-
tasks. These subtasks are to be assigned to ten teams, each with
one to three designers. Results are also summarized in Table II.
For Case 1, design and communication subtasks are scheduled
together, and the feasible cost is 12 263 with a duality gap of
4.9%. For Case 2, only design subtasks are scheduled initially,
and the feasible cost is 6514. When communication subtasks
are added for the design teams to proceed further, the feasible
cost for the realized schedule is 33 932, which is much higher
than that of Case 1 with an increase of 176.7%. Therefore, the
conclusion presented before that proper scheduling of design
and communication activities together can avoid the significant
delay caused by waiting for information still holds when the
project size increases.

Example 2: A project with a total of 100 design tasks and
100 communication tasks is to be scheduled. There are 150 de-
pendency relationships among tasks, and each task is divided
into 1 to 5 subtasks. These subtasks are to be assigned to 20
teams, each with one to four designers. Our method is com-
pared with the LR method without penalty terms on the viola-
tions of coupling constraints. It is also compared with a heuristic
method based on a modified shortest processing time/critical
ratio (SPT/CR) rule. The original SPT/CR rule has been proved
to be effective for job shop scheduling [38]. It gives a subtask
high priority if the subtask has a short processing time, and low
priority if the subtask has slack time to meet its due date. To re-
flect different levels of importance of tasks, the SPT/CR index
for subtask at time is modified to include the tardiness
penalty weight

(22)
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TABLE III
PERFORMANCE COMPARISONS OF DIFFERENT METHODS

TABLE IV
PERFORMANCES OF THE LR METHOD WITH DIFFERENT PENALTY WEIGHTS

In the above, is the processing time of , and is the
remaining processing time for task .

Results of different methods are summarized in Table III,
where “constraint violation” is computed as the sum of the vi-
olations of coupling constraints by subproblem solutions, in-
cluding the sending-receiving dependency constraints (5)–(7)
and resource capacity constraints (8).

Comparing to the LR method without penalty terms, our
method (LR with penalty terms) has a lower feasible cost, a
lower duality gap, and requires less computation time. This is
because our method improves the feasibility of subproblem
solutions, thus requiring less iteration to converge and fewer
adjustments of subproblem solutions to construct a feasible
solution. Results also show that both LR methods generate
better schedules than that of the modified SPT/CR rule.

To study the effects of penalty weight associated with the
violations of coupling constraints on solutions, four values of
are examined. Results are summarized in Table IV.

In the table, the lowest feasible cost 16 086 and the shortest
computation time 376 s are obtained when equals three. When

equals 15, the algorithm cannot converge because this leads
to an ill-conditioned dual problem. The above results demon-
strate that appropriately setting penalty weight is important
and can lead to low cost and fast convergence. The appropriate
value of can be selected by experimentation.

Example 3: In this example, schedules are dynamically con-
structed for a small project with two design tasks, four com-
munication tasks, and uncertain resource-hours. There are six
dependency relationships among the tasks, and each task is ac-
cordingly divided into three subtasks. These subtasks are to be
assigned to two teams, each with two designers. Data are sum-
marized in Table V. Three cases with different levels of uncer-
tainties are considered, where the distributions of uncertain re-
source-hours are assumed Gaussian with standard deviations of
10% (low), 20% (medium), and 40% (high) of their expected
values.

Our method is compared with the modified SPT/CR rule.
For our method, the deterministic problem is first solved by
using the expected values of resource-hours to obtain scheduling
policies. The method presented in Section III-E is then used
to dynamically construct schedules based on the realizations

TABLE V
PROJECT DATA FOR EXAMPLE 3

TABLE VI
SIMULATION RESULT FOR EXAMPLE 3

of random events. Fifty Monte Carlo runs are performed for
each uncertainty level, and results are summarized in Table VI.
The optimal comparison technique is then used to compare the
two methods, where the significance of comparison is computed
based on hypothesis testing [3].

Results in Table VI demonstrate that the mean feasible costs
obtained by using our method are lower than those obtained by
using the modified SPT/CR rule. For the low uncertainty (10%)
case, our method is better than the heuristic method with 99.98%
confidence. For the medium uncertainty (20%) case, our method
is better than the heuristic method with 99.22% confidence. For
the high uncertainty (40%) case, our method is still better than
the heuristic method, however, the confidence level drops to
81.06%. This is because our scheduling policies are obtained
based on the deterministic model, therefore become less effec-
tive as standard deviations increase.

V. CONCLUSION

In this paper, a novel optimization model has been established
to schedule design projects. Task dependencies and the asso-
ciated communication activities are explicitly modeled to rep-
resent sequential, concurrent, and independent processes. The
problem is solved by using the Lagrangian relaxation technique
within the surrogate optimization framework. Numerical results
demonstrate that high-quality schedules are generated in a com-
putationally efficient way, and penalties on the violations of cou-
pling constraints effectively improve schedule quality and algo-
rithm convergence. Furthermore, scheduling design and com-
munication subtasks together avoids the high costs associated
with the delay caused by waiting for information. In case that
task resource-hours are uncertain, results based on the determin-
istic model provide good policies that can be used to dynami-
cally construct schedules.

The above method provides a new direction to solve insepa-
rable problems. Also, although the scheduling of a single project
is presented, the method can be extended to handle multiple
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projects that may share common resources through relaxation.
In addition, the method can be extended to formally handle un-
certain process times by following Luh et al. [20], and uncer-
tain number of design iterations by following Luh et al. [21] by
combining Lagrangian relaxation with stochastic dynamic pro-
gramming instead of deterministic dynamic programming.
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